

2. Workshop von ÖKOPROVIT

Energiesparen im Bestand durch effiziente Anlagen und Wärmerückgewinnung!

Helmut Beyer
Planungs GmbH für Haustechnik
Heinz A. Donner

Überblick

- Vorstellung des Büros
- Anlagenbeispiel einer Sanierung
- Energie sparen mit effizienten Anlagen
- Bestandsprobleme in der Sanierung
- Planungsziele in der Sanierung
- Energie sparen mit Wärmerückgewinnungssystemen
- Ausführungsprobleme
- Ergebnisse von Sanierungen
- Visionen

Vorstellung des Büros

- 1961: Gründung durch Heinz A. Donner
- 1980: Eintritt in die Firma
- 1991: Einstieg als geschäftsführender Gesellschafter
- 2003: Herr Donner scheidet aus
- 2004: 2. Geschäftsführer Herr Schmid
- 2011: 7 MitarbeiterInnen: Techniker, Dipl. Ingenieure, Sekretärinnen

Schwerpunkte des Büros

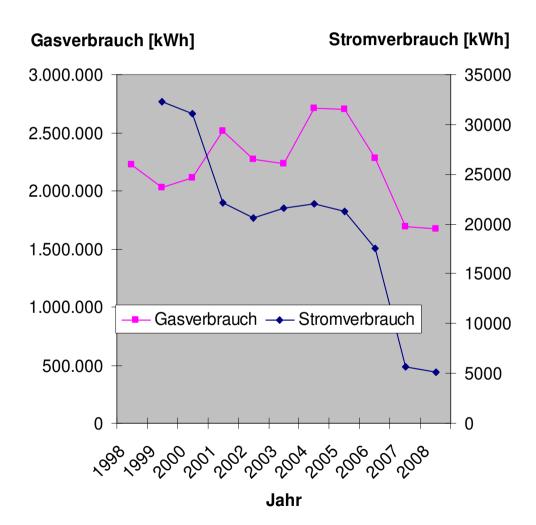
- Planung Heizung, Lüftung, Sanitär, Klima
- 1989: erste Gasbrennwertanlage
- Ziel: exakte Planung, Ausführung und Überwachung
- Archiv mit Planungsunterlagen seit 1976
- Verlagerung vom Neubau zur Sanierung
- Viele Stammkunden

Anlagenbeispiel einer Sanierung


WBG Ackermann - Wohnanlage Hochfeld

- ca. 13.100 m²
- 7 Gebäude, Baujahr 1968 (Heizkessel 1987)
- 200 Sozialwohnungen
- Kesselleistung: 933 kW (vorher 2.200 kW)
- Heizkörperauslegung: 82/55°C
- Max. Stromaufnahme Pumpe 760 W

WBG Ackermann – Wohnanlage Hochfeld


WBG Ackermann – Wohnanlage Hochfeld

WBG Ackermann – Wohnanlage Hochfeld

Wärmeverbrauch:

vorher: 179 kWh/m²a

nachher: 128 kWh/m²a

-28,3% = -40.000 € bei 6 Cent/kWh

Stromverbrauch:

vorher: 1,86 kWh/m²a

nachher: 0,41 kWh/m²a

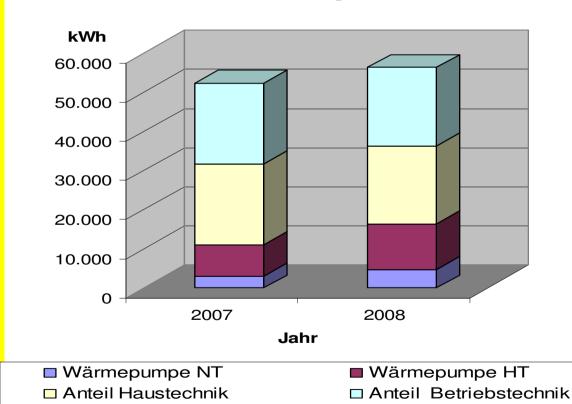
-77,8% = -3.420 € bei 0.18 Cent/kWh

Anlagenbeispiel

Kreissparkasse Zweigstelle Untermeitingen

- ca. 550 m² Nutzfläche
- Heizleistung 36 kW
- Heizkörperauslegung 45/30°C
- Kälteleistung 48 kW bei 26 kW Kühllast

Kreissparkasse Zweigstelle Untermeitingen



Das Herzstück - die Wärmepumpe

Kreissparkasse Zweigstelle Untermeitingen

Zusammensetzung Stromverbrauch

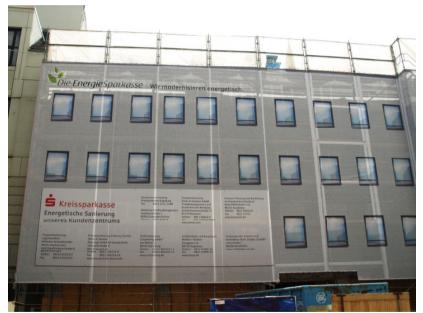
Stromverbrauch

Betriebstechnik

2007: 38 kWh/m²a

2008: 36 kWh/m²a

Haustechnik


2007: 58 kWh/m²a

2008: 66 kWh/m² a

Anlagenbeispiel

Kreissparkasse Hauptstelle

Absorptionskältegewinnung aus Fernwärme, freie Kühlung, kleiner Teil Kompressionskälte (Grundlast Technik)

Energie sparen mit effizienten Anlagen!

- Richtiges Konzept wichtig
 - Austausch einzelner Bauteile wie Kessel, Speicher,
 Pumpen, etc. reicht nicht aus
- ganzheitliche Sicht: Energieeinsparung und "Altlastenbeseitigung"
- Oberstes Ziel: Betriebskostenreduzierung!
- Wichtig zur erfolgreichen Sanierung: alte Montagepläne, Hausmeister oder Betriebsleiter

Planungsziele in der Sanierung

- Trinkwarmwasserbereitung
 TrinkwV 2001 und Arbeitsblatt W 551
- Heizanlagenwasserqualität VDI 2035
- Schlamm- und Schmutzfänger in Altanlagen
- Luftqualität in zu belüftenden Räumen

Bestandsprobleme in der Sanierung

- Anlage nicht richtig ausgelegt
 - Heizleistung: Analyse notwendig,
 Anschlussleistung immer zu groß
 - Pumpenauslegung: immer zu groß
 - Heizregister Lüftung: immer zu klein
 - Frischluftanteil häufig zu hoch, nicht bedarfsgeführt
- In Altanlagen dadurch fast immer wirtschaftliche Probleme bei Öl- und Gasbrennwert oder Fernwärme

Bestandsprobleme in der Sanierung

- Wärmeverteilung im Gebäude
 - Hydraulischer Abgleich
 - Ventilautorität Regelventil
 - Ventilautorität Thermostatventil
 - Drehzahlregelung Pumpen

Wärme(rück)gewinnung

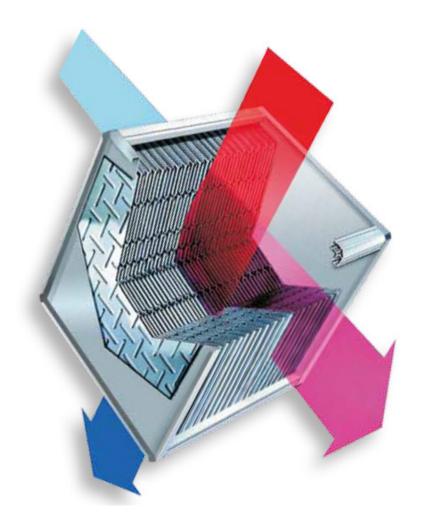
- Abwärme von Produktionsprozessen zur (Vor)erwärmung anderer Medien (Luft / Wasser)
- Wärmepumpe (Luft- und Wasser) für Heiz- und Kühlzwecke
- Wärmerückgewinnung bei Lüftungsanlagen (Anpassung der Luftmengen, besonders Frischluftanteil)

Energieverbrauch von RLT-Anlagen

Wichtigste Kriterien nach DIN EN 13053

- der Wirkungsgrad und der Druckverlust der Wärmerückgewinnung
- die Luftgeschwindigkeit im Gerätequerschnitt und im Kanalnetz
- die elektrische Leistungsaufnahme durch die Motor- und Ventilatoreinheit

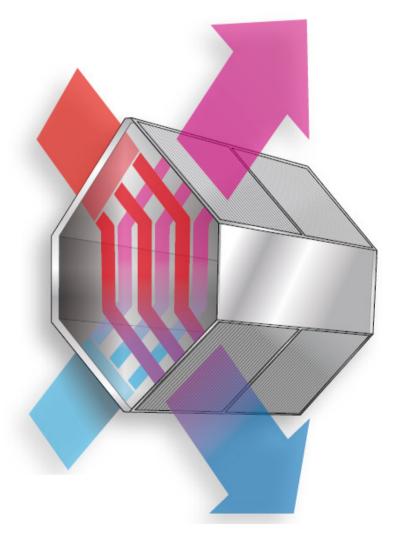
Die Luftmengenregelung über Frequenzumformer oder Druckregelung, bzw. CO₂ oder VOC


Wärmerückgewinnung (WRG) in Lüftungsanlagen

Gängige Systeme

- Kreuzstrom-Plattenwärmeaustauscher
- Gegenstrom-Plattenwärmeaustauscher
- Rotations-Wärmeaustauscher
- Wärme-Akkumulator
- Kreislaufverbund- und Hochleistungs-KV-System
- Wärmerohraustauscher

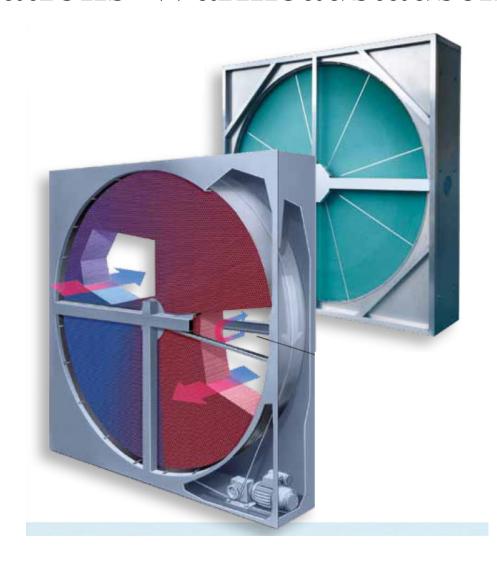
Kreuzstrom-Plattenwärmeaustauscher



Kreuzstrom-Plattenwärmeaustauscher

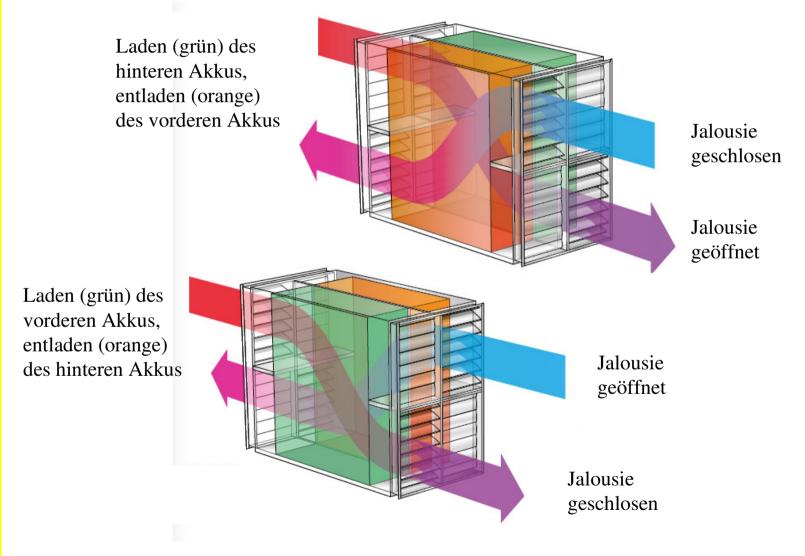
- Rückwärmezahl ca. 50 60% (Ausführung mit Bypass oder adiabater Kühlung möglich)
- Einsatz bei Luftleistungen von
 ca. 1.000 20.000 m³/h zu günstigen Kosten
- Getrennte Luftströme, keine Beeinflussung von AUL und ZUL, keine Feuchteübertragung möglich

Gegenstrom-Plattenwärmeaustauscher


Gegenstrom-Plattenwärmeaustauscher

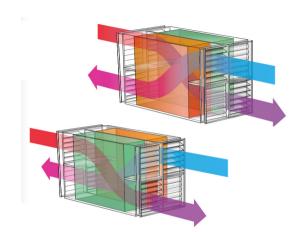
- Rückwärmezahl bis 90% (Ausführung mit Bypass oder adiabater Kühlung möglich)
- Einsatz bei Luftleistungen von
 ca. 1.000 20.000 m³/h zu günstigen Kosten
- Getrennte Luftströme, keine Beeinflussung von AUL und ZUL, keine Feuchteübertragung möglich

Rotations-Wärmeaustauscher

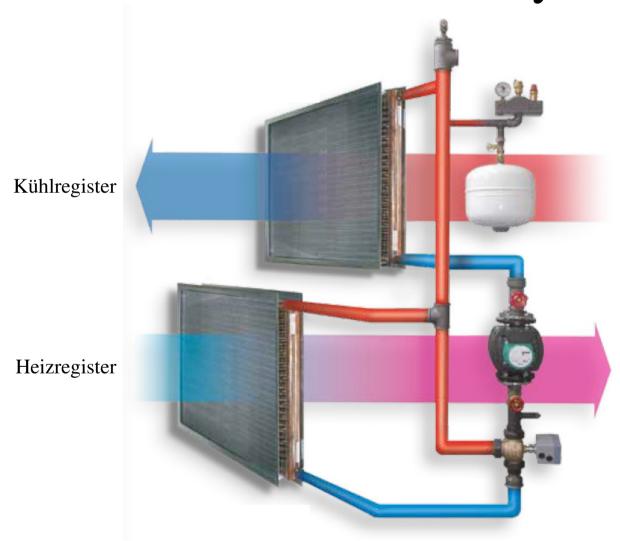


Rotations-Wärmeaustauscher

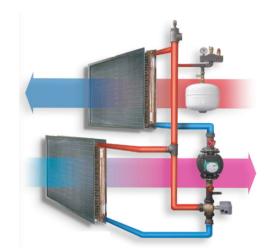
- Rückwärmezahl ca. 70 75%
 (Ausführung mit Bypass möglich)
- Einsatz bei großen Luftleistungen von ca. 15.000 – 100.000 m³/h zu günstigen Kosten
- Feuchteübertragung möglich


Wärme-Akkumulator

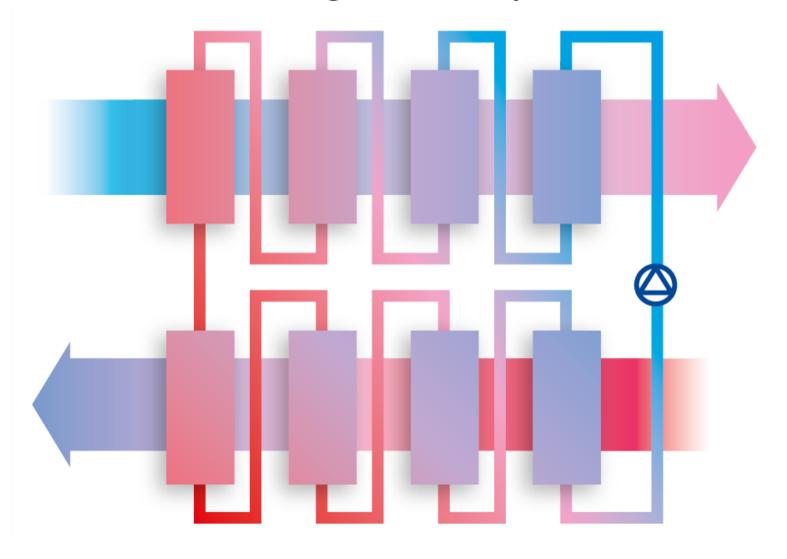
Wärme-Akkumulator


- Rückwärmezahl ca. 85 95%
- Wärmeentzug im Winter
 Kälteaufnahme im Sommer

- Einsparung an Befeuchterleistung durch hohe Rückfeuchtezahl im Winter und in der Übergangszeit
- Nacherwärmung nicht notwendig

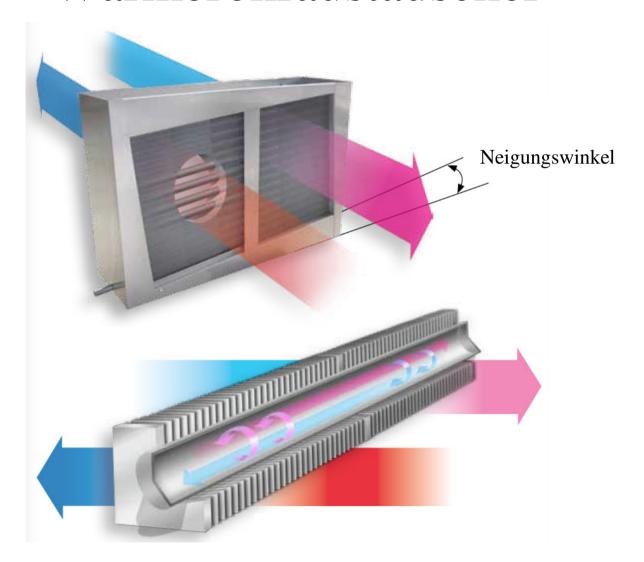

Kreislauf-Verbundsystem

Kreislauf-Verbundsystem


- Rückwärmezahl ca. 35 45%
- Einsatz bei großen Luftleistungen und begrenztem Platzangebot

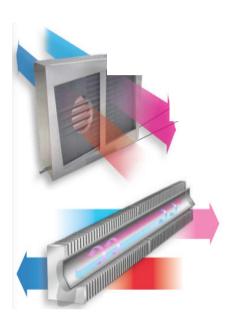
• Abluft- und Zuluft lokal voneinander getrennt, dadurch höchste Hygiene

Hochleistungs-KV-System



Hochleistungs-KV-System

- Rückwärmezahl bis ca. 90%
- Sonst wie Kreislauf-Verbundsystem
- Multifunktionale Nutzung möglich
 - kombinierbar mit indirekter adiabater Kühlung
 - Integrierte Nacherwärmung / Nachkühlung
 - Integrierte freie Kühlung
 - Integrierte Rückkühlung von Kältemaschinen
 - Brauchwasservorerwärmung mit Kältepotentialnutzung
 - Solar- und Abwärmenutzung


Wärmerohraustauscher

Wärmerohraustauscher

- Rückwärmezahl ca. 25 35%
 50 75% Hochleistungsbereich
- Einsatz bei großen Luftleistungen und begrenztem Platzangebot
- Keine Kontamination der Außenluft, dadurch höchste Hygiene
- Keine Feuchte- und Kälteübertragung möglich
- Einsatz bei sehr hohen Medientemperaturen

Ausführungsprobleme

- zu viele verschiedene Techniken
- keine individuelle Planung besonders bei Kleinanlagen
- keine umfassende Beratung
 teurer Einbau oftmals über die Jahre günstiger

Ergebnisse von Sanierungen

- Wärmeverbrauch: Reduzierung um 20 45%
- Stromkosten: Reduzierung um 60 85%
- Anschlusskosten: Reduzierung um 30 64%

Visionen

- Reduzierung der Abhängigkeit von Öl, Gas, Uran
- Begrenzung der CO₂-Emissionen auf 2 t / Person
- Weltweit globalisierte Stromnetze
- Passivhaus, Null-Energiehaus, Energie-Plus-Haus werden beim Neubau Standard
- Berücksichtigung der "grauen Energie" bei der Erstellung der Gebäude und der Technik
- Dezentrale Strom- und Wärmeerzeugung (BHKW)

Eine Vision - BHKW

Quellen

Fotos: Büro Donner, Privat

Funktionsbilder: Wolf Geisenfeld